Hard Homogeneous Spaces

نویسنده

  • Jean Marc Couveignes
چکیده

This note was written in 1997 after a talk I gave at the séminaire de complexité et cryptographie at the École Normale Supérieure After it was rejected at crypto97 I forgot it until a few colleagues of mine informed me that it could be of some interest to some researchers in the field of algorithmic and cryptography. Although I am not quite happy with the redaction of this note, I believe it is more fair not to improve nor correct it yet. So I leave it in its original state, including misprints. I just added this introductory paragraph. If need be, I will publish an updated version later. We introduce the notion of hard homogeneous space (HHS) and briefly develop the corresponding theory. We show that cryptographic protocols based on the discrete logarithm problem have a counterpart for any hard homogeneous space. Indeed, the notion of hard homogeneous space is a more general and more natural context for these protocols. We exhibit conjectural hard homogeneous spaces independant from any discrete logarithm problem. They are based on complex multiplication theory. This shows the existence of schemes for authentication and key exchange that do not rely on the difficulty of computing dicrete logarithm in any finite group nor factoring integers. We show that the concept of HHS fits with class field theory to provide a unified theory for the already used discrete logarithm problems (on multiplicative groups of finite fields or rational points on elliptic curves) and the HHS we present here. We discuss a few algorithmic questions related to hard homogeneous spaces. The paper is looking for a wider point of view on the discrete logarithm problem both mathematically and cryptographically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hereditarily Homogeneous Generalized Topological Spaces

In this paper we study hereditarily homogeneous generalized topological spaces. Various properties of hereditarily homogeneous generalized topological spaces are discussed. We prove that a generalized topological space is hereditarily homogeneous if and only if every transposition of $X$ is a $mu$-homeomorphism on $X$.

متن کامل

Frames and Homogeneous Spaces

Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...

متن کامل

Convergence to equilibrium for linear spatially homogeneous Boltzmann equation with hard and soft potentials: a semigroup approach in L1-spaces

We investigate the large time behavior of solutions to the spatially homogeneous linear Boltzmann equation from a semigroup viewpoint. Our analysis is performed in some (weighted) L-spaces. We deal with both the cases of hard and soft potentials (with angular cut-off). For hard potentials, we provide a new proof of the fact that, in weighted L-spaces with exponential or algebraic weights, the s...

متن کامل

On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type

‎In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five‎. ‎Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces‎. ‎Moreover‎, ‎we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006